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Abstract—The transient stress and displacement fields around a finite crack opened out by normal and shear
tractions applied to its surface are obtained using integral transforms coupled with the technique of Cagniard.
The tractions are applied suddenly to the crack which simulates the case of impact loading. By subtracting a
uniform state of stress, the present solution also applies to the problem of the sudden appearance of a crack in
a pre-stressed body. The results show that significant differences exist between the dynamic stress-intensity factors
obtained in this problem and those resulting from static loading. In particular, the energy released by the dynami-
cally loaded crack which is associated with the stress-intensity factor varies with time reaching a maximum very
quickly and then oscillates about the static value. The information gained is usefu! in determining the condition
of crack propagation under impact.

INTRODUCTION

OF CONSIDERABLE importance in structural analysis is the transient response of a flaw
to a time dependent stress field. The solutions to problems of this type could be applied
equally well to cracks in an aircraft wing or to faults in the lithosphere of the earth for
example.

A number of papers on the area of dynamic crack analysis have been reviewed in [1].
Recently, the response of a penny shaped crack to various types of transient loads has
been considered in papers by Embley and Sih [2] and Sih and Embley [3]. Some other
works that specifically deal with transient responses of flaws with finite dimensions have
been discussed in Refs. [2, 3] and are due to Flitman [4], Kostrov [5], Eshelby [6] and
Achenbach {7, 8]. With the exception of Flitman who considered the far-field solutions
to the problem of the sudden appearance of a crack in an elastic media, the authors men-
tioned have used mathematical techniques successful so far for the case of anti-plane
shear only.

The sudden appearance of a semi-infinite crack in an elastic media has been considered
by Kostrov [5] for the case of anti-plane loading and by Maue [9] and Baker [10] for the
problem of normal tractions. Although these solutions become unhounded as t - o«

t This paper is the result of research sponsored by the U.S. Air Force, Eglin Air Force Base under Contract
F08635-70-C-0120.
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the near field solutions are valid near one tip of a finite crack for the initial period of time
before interaction with the stress waves emanating from the other crack tip occurs.

In this paper, the complete near field solution to the problem of a finite line crack
subjected to transient in-plane loading will be considered. In conjunction with this, it
should be noted that experimental results have been reported by Soltesz and Sommer
[11] which have a direct bearing on the theoretical results presented here. The aforemen-
tioned authors experimentally determined the time-dependent dynamic stress-intensity
factor due to normal loading of a crack by measuring crack opening displacement. The
measurements were made on a glass plate by using an optical interference technique and
high speed photography. A shock wave formed in a conventional shock tube was used to
cause a step function pressure increase on the end face of the cracked plate. Although
wave reflection at the boundaries of the finite plate makes interpretation difficult, the order
of magnitude of the response compares favorably with the results obtained in this paper.

The specific geometry to be considered here is an infinite elastic plate containing a
through-the-thickness line crack oriented as shown in Fig. 1. The transient response
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F1G. 1. Crack geometry and stress components.

of the material in the neighborhood of the crack tip will be obtained for two cases. The
first deals with the sudden application of self-equilibrating normal tractions to the crack
surface. For mathematical simplicity the load is separable into a spatial and temporal
function where the spatial function is even in x. Symmetry conditions then enable the
problem to be solved in the upper half-space only [12]. The results are directly applicable to
the sudden fracture of a plate due to impact caused by projectile penetration. This is
modeled as the case of a crack appearing suddenly in a pre-stretched plate which is mathe-
matically equivalent to the problem of applying sudden tractions to the crack surface.

The second case pertains to sudden in-plane shear tractions applied to the crack
surface. If the tractions on the upper and lower crack surfaces are equal in magnitude and
opposite in sign then symmetry conditions again allow solution in the upper half-plane
only. Additional simplicity is obtained by requiring that the spatial component of the load
be even in x.

In both cases the method of solution will be to reduce the mixed boundary value problem
to a standard Fredholm integral equation in the Laplace transform variable and sub-
sequently invert the Laplace transforms of the stress components by a combination of
numerical means and an application of the Cagniard inversion technique. This method was
used for the transient problem of anti-plane strain by Ravera and Sih {13].
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FORMULATION OF PROBLEM

For plane elastodynamic problems, the displacement component may be expressed
in terms of two scalar potentials ¢(x, y, t) and ¥(x, , t), so that
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B 0x 6y
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where ¢ and i satisfy the second order partial differential equations
1 3¢ 1 8%y
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Ve 2 a®’ Vv c2 or? @

with V2 being the Laplacian operator. The dilatational and shear wave velocities are,
respectively

e, = [A+2u)/p}t, ¢y = (/o)

with 4 and u being the Lamé constants.
Applying the strain-displacement and constitutive equations for a homogeneous iso-
tropic elastic media the stresses may be written in terms of ¢ and ¥ as,

oy 0
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Problem A—symmetric in-plane extension

For zero initial conditions, the stress and displacement field due to sudden application
of normal tractions to the crack surface may be found by solving the preceding field
equations subject to zero initial conditions, and the following boundary conditions at
y=0

6,(x.0,8) = —0,q,(x)f(1), for|x] < a
1%, 0,1) = 0, for 0 < |x] < o« )
U(X, Oa t) = 0, for ix! > a.

In additior: the condition on displacement at infinity is
lim  [u(x, y, 1), v(x, y.0] = 0.

x?+yl—oc

The parameter o, is a constant with the dimension of stress and g,(x) is restricted to func-
tions that are even in x; that is,

q,(x) = q,(—x).
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Problem B—skew-symmetric in-plane shear

In this case in-plane tangential tractions only are suddenly applied to the crack surface.
The initial conditions are again zero and the boundary conditions are:

0,(x.0,¢) =0, for0 < |x} < 0
Txy(X, 0,1) = —quz(x)f(t), for|x| <a (5)
u(x,0,¢) =0, for|x| > a

and,
lim  (u(x, y, 1), v(x,y,8)] =0

x2+y2ao

where ¢, is a constant with the dimension of stress and where g,(x) is restricted to functions
that are even in x. That is,

q,(x) = q,(—x).

DUAL INTEGRAL EQUATIONS

Recalling that the initial conditions are zero, the Laplace transform may be applied
to equations (2) with the resuit

Vig* = (p/c,)*¢*,  VH* = (p/c)*Y* (6)
with the Laplace transform pair being defined by the equations:

© 1
o = | soexp-pnde 10 =5 [ 120 expipncp
0 Br
where the second integral is over the Bromwich path [14].

In order to reduce equations (6) to ordinary differential equations the Fourier cosine
and sine transforms will be applied. The Fourier cosine transform pair is

f@ = [ feoeosanax,  fix) = [ o) cosax) da
4]

and the Fourier sine transform pair is
w0 N po
f@ = [ swsindx, 56 =2 flo)sintex) do
0 nJo

The application of these transforms will depend on whether the function under considera-
tion is even or odd in x and will be considered separately for problems 4 and B.

Problem A

By consideration of the symmetry properties of the boundary conditions it can be
shown that for this case,

¢(x9 ¥ t) = ¢(_x7 ¥ t)v l/l(x, Vs t) = _'.//(—x9.y9 t)

and the solution may be considered in the first quadrant of the plane.
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Then, the Fourier cosine transform is applied to the function ¢* and the Fourier sine
transform is applied to /* in equations (6), the result being,

dZ *®

07 —[o? +(p/c,)?1¢* = 0

g ()
a7 — [0 +(p/c,)*W* = 0.

Solutions to equations (7) that satisfy the regularity conditions at infinity are

é* = %Ax(a, p) exp(—7,¥)

. ®)
Y* = 3By(@, p) exp(—7.y)
provided that the a-plane is cut so that,
JI+(p/e)*] 2 0, —w<a<o(f=12).
The inverse Fourier transforms of equations (8) are
8* = [ Ao by expi—1,9) costax) da
° ©)

y* = fw B, (2, p) exp(—7y,y) sin(xx) da.
0

The quantities y, and 7, in equations (8) and (9) are defined as

7 = VI +(p/e)?), vy = Je?+(p/cy) )

By combining the Laplace transform of t,, with ¢* and y*, the second boundary
condition in equations (4) may be expressed in the form,

J. {ay,A,(a, p)—[2® +¥(p/c,)*]B (2, p)} sin(ax)da =0, 0 < x < cc.
0
The preceding equation is satisfied for all x by defining a new function D,(a, p) such that

[« +3(p/c,)*)
"1

Ay(a,p) = D(¢,p),  B,(a, p) = aD(a, p).

Then, referring to equations (9), ¢* and y/* may be written as

© 1 1
* - = -
L '}),(H-ZDczk2

Y = f D (e, p) exp(~y,Y) sin{ax)x do
0

D, (a, p) exp(—7,y) cos(ax)a? da
(10

with the parameter k defined as,

k = ¢,/p.



982 G. C. SiH, G. T. EMBLEY and R. S. RAVERA

Finally the first and third boundary conditions in equations (4) may be applied by sub-
stituting equations (10) into the Laplace transforms of ¢, and v. The resulting set of dual
integral equations 1s

J. ? g,(ek)D, (o, p) cos{oex)er dat = Ixl <a

o1q,(x)f*(p)
pp>
° (1)

on D,{a, p) cos(ex) da = 0, x| > a
]

where f*(p) is the Laplace transform of the function f(¢) in the first of equations (4) and
where

112 %
g,(k) = 2k*[1 +(c0/k)2}"*{(l +§-k—5) - (1 + —}-;5) (1 +(c0/k)2]*}
with
Co = Cy/cy.
Problem B

In this case consideration of symmetry in the boundary conditions leads to the following
properties of ¢ and ¥.

¢(x5 ¥ t) = “¢(—'x, Vs t)y ./’(xsy’ t) = ‘ll(*x9 Y t)'

Then, by similar reasoning to that used for problem A, integral representations of the
Laplace transforms of ¢ and ¢ may be written in the form

8* = [ Do prexpi 7. snferie do
L]
® 1 i (12)
gt = — fo 5};(1 +—2-;5-E-2-) D,(a, p) exp(~—7,y) cos(ax)a? da.

These expressions automatically satisfy the first of equations (5) while the remaining
boundary conditions require that D,(«, p) be the solution to the following set of dual integral
equations

fw g:(ak)D(a, p) cos(ax)e dor = 539%51(33, x| <a
0
(13)

Jm D,(a, p) cos{ax)da = 0, Ixl > a
4]

with

PYPYET PINES DA | PRV ) S PO L k”}
g,(k) = +iz t3z] e [T4(co/k)*T* .
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SOLUTION OF DUAL INTEGRAL EQUATIONS

The form of the dual integral equations is the same for both problems A4 and B. In order
to put these equations in a form amenable to solution, the first equation in each set of the
dual integral equations is integrated with respect to x over the interval (0, x). The result for
both problems may be summarized as follows:

[ esonon o pysinan) dn = ZRITB iy < g

° (14)

f D (e, p) cos(ax) da = 0, x| > a
0
where j = 1,2 and

0/x) = f T g(5)ds.
0]

The subscript j is equal to 1 for problem A and 2 for problem B.
Following the usual argument [15] for solution of dual integral equations, a displace-
ment related function h¥(x, p) is defined by the equation,

0

B3, p) = % J' D, ) cos(ex) de (15)

where h¥(x, p) must be zero for |x| > a as required by equation (14). Hence the Fourier
inversion theorem leads to the expression,

D{a,p) = Jw h¥(x, p) cos(ax) dx. (16)
0

The function h¥(x, p) is to be constructed to possess the proper asymptotic behavior at the
crack border so that the near-field displacement is proportional to the square root of the
distance from the crack edge. To this end, let

s Ute, pe d
B*(x, p) = _:/L((Tf;’i);xz;, Xl < a. 17

Substitution of equation (17) into (16) and application of the identity
Tcos{ax)dx n

S T = 5-’0(0") (18)

where J, denotes the zero-order Bessel function of the first kind, leads to the expression

Dfap) =3 fo U*(z, p olatye dr. (19)

In order to rewrite the first of equations (14) as an Abel’s integral equation for U¥(z, p)
a function w (k) is introduced such that

wiak) = (1—c2)—g/ak). (20)
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By virtue of equations (19) and (20), the governing integral equation takes the form

(l—co)f [D*(t p)‘tf Jo{at) sin(eex) da] dr = 2 G—Q-L(g—z—f—*—(ﬂ

+ f [U’j“(r, pr J‘ w {ak)J o(at) sin(ex) da] dr. (21)
(4] [¢]
Using the identity

© ) 4 0, O<x<rt
J.o Jolat) sin(ax) da = {(x"'—rl)'*, x>

the desired form of Abel’s integral equation is obtained
(d—cd) f Uz, prde _ 2 0,0/x)f*(p)
Vo V=T T m pp?

r [U *(t, p)t f w{ak)J o(at) sinfax) da} dr, |x] <a.

Inversion of the preceding equation yields

(1= UsE, p) = f \/(t - {2 aﬂ;(::’{ (p)

+ Jw [U}‘(C, X J‘m w {ak)J o(al) cos(ax)a da] d¢ } dx, t<a. (22
0 0

Now, introduce the non-dimensional variables
(=1/a, n={a s=aa z=x/a
and define
K = k/a, Biz) = w{za)
z\ppz\/(é)U*(éa .P)
o,/ *(p)

Then, making use of equation (18), equation (22) may be written in the form of a standard
Fredholm integral equation of the second kind

AT, k) = ( 1-

A, )~ f A, 0K (G n) dy = —Jc (23)

J‘ B(z) dz
JE=-79
whose kernel, being symmetric in £ and #, 1s
Kpem = G0 [ swfonondolsdids. 0<Es 1 O<ns
0/vY 0

For rapid convergence of the infinite integral, define a function d{x) as

H. .
d{x) = W,(K)+F—+_LE]—;, Jj=12
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where, in order that d{x) be of order (x)* for large x, H ;and E? are chosen as
H, = 3(3ct—4ct+3)

H, = l(l+c3)
El= 8H ——(5¢§ —6c3+2ci+1)

E% = 8—f12(1 +Cg).

Since

v _H H, |[E E,
[ ltgion (), 0<co

the expression for the kernel in the Fredholm integral equation becomes

\/(fﬂ)[ (ij) ( ) f SdJ(S’C)Jo(Sﬂ)"o(sf)d{l 0O<ex<n

where I, and K, are the zero-order modified Bessel’s functions of the first and second kind,
respectively.

Making use of equation (19) and the definition of A} the unknown function D (a, p)
may be written in terms of the solution of the Fredholm integral equation as,

a@f*p) [ [ﬁ;(é, x)]
(1 —cdop? JE Jo(aad)é 4.

This expression may be integrated by parts with the result

°f*) { . [ [A;(c, x>] }
D{a, p) = (= cppia AN, k) (xa) J‘o & \/é J (@ad)E d¢ (24)

from which the stresses and displacements may be determined.

D{a, p) =

TIME DEPENDENT STRESS FIELD

The integral expressions for the Laplace transforms of the potentials ¢ and y are now
completely determined and, making use of equations (3), corresponding expressions for
the Laplace transforms of the dynamic stresses may be obtained. It remains then to take
the inverse Laplace transforms. This may be accomplished by applying the Cagniard
DeHoop inversion technique [16, 17]. Due to the complexity of calculation, the detailed
procedure will be given only for the first stress invariant ¢, +0,. From equations (3) and (6)
the Laplace transform of 6, + 0, is

oX+o% = =2pp*(1-ch)p*, Jj=1,2 (25)

where the j subscript has been added to distinguish between the problem with normal
tractions and the problem with shear tractions.

The part of the solution of interest here is the singular solution near the crack tip. For
this portion of the solution it is easily shown [15] that only the first term on the right hand
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side of equation (24) need be retained. The integral expression in D (g, p) is associated with
terms that remain finite at the crack tip.

Problem A—(j = 1)
Putting ¢* in equations (10) into (25), the near-field solution for ¢ +g, in the trans-
formed plane is

.

ot +0* = —20,af *(P)AN(L, x) f |

é[az +4(p/c,)*)J (oa) exply, y) cos(ex) da.
0 1

Changing the variable of integration to « = wp and noting that J,(apw) is an odd function
with respect to w, the above becomes

o*+0* = —o,af *(PAN(L K)p fw T(w)J (apw) exp[ — p(\/(W? +c,” )y —iwx)]dw  (26)

in which T(w) stands for

_ wiH(1/2c)
T = T+ (1T

Making use of the identity [18],

Jix) = ;;—J‘ exp( —ix cos w) cos w dw
0

equation (26) further simplifies to

©

o +o¥ = —5"—‘7’ri’3f*(p)/\f(1,x) f c0s
Q

x da){fm T(w) exp[ — p(/(W* +¢[ 2y)—iwX)] dw}. 2n

The variable X is given by

X =Xx—-acosw.

To evaluate equation (27), consider first the function I* defined by the relation
= f coswde T(w) exp[ — p(/(w? +¢] Dy —iwX)] dw. (28)
o 0

This function is in a form suitable for evaluation through the Cagniard-DeHoop method.
The objective hete is to transform the integral on the right side of equation (28) into a
recognizable Laplace transform. This may be done by making the change in variables,

T = /(W +cly—inX.
Solving for w as a function of t gives
iXt
R?
in which R? = X?+y?and y = X tan f where f is defined in Fig. 2.

w= % JIe - (Rl 12+ 29)
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The remainder of the procedure consists of treating w as a complex variable and locating
a path in the w-plane along which 7 is a positive number. Referring to Fig. 2 and noting
that the integrand in equation (28) possesses branch points at +ic,, cuts are made in the
w-plane as shown in order that the function (w? + 1/c?)* be single valued and have a real
part that is positive everywhere in the w-plane. If 7 is restricted to real non-negative values,
equation (29) is the equation of a hyperbola in the w-plane. If X > 0 (X < 0)the hyperbola
will be in the upper (lower) half of the w-plane. The path of integration in equation (28) can
be converted from the real axis to the aforementioned hyperbola by making use of the
Cauchy integral theorem and Jordan’s lemma. Thus, after changing the variable of in-
tegration to T by means of equation (29), it is found that

It = fcoswdwf [T(w*)
0 Rjey

where the (+) and (—) superscripts refer to the right (left) hand legs of the hyperbola.
Noting that the inner integral is in the form of a Laplace transform it is a matter of inspec-
tion to write the inverse Laplace transform of I as

+

dw _odw”
o (w )—d; ]exp(—pr)dr (30)

1,0 =J"H(t—-§) I:T(w‘“)d:t - (w')%-} cos  dw (1)
0 i

where H(t) is the Heaviside step function. Referring to equations (27) and (28) and making
use of the convolution theorem for the Laplace transform, the stress invariant is obtained :
: t
o +0, = —1“7;‘—1 m,(t — 1) ,(7) dr (32)
[
where

my(t) = £ '[pf *(P)AY(L, 1))
with #~! being the inverse Laplace transform operator.
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In order to determine o, +0, in the region near the crack tip it is necessary to extract
the singular portion of I,(t) from equation (31). Without going into the mathematical
details, it is easy to show that, as long as c,¢ is sufficiently greater than r, the radial distance
measured from the crack tip, /, is independent of time, i.e.

I, = _i{ " ___4dq el qdg }
l al J_,(g-2J@* ¢ J_.(g-2(@*-q*)
with
z=x+iy, Z=x-Iy
and where the transformation of variables

g=acosw

has been made.
Making use of chapter 4 of Muskhelishvili [19] the evaluation of the above integrals

near the crack tip leads to the following expression for the singular portion of I,

2mi
I, = '\7—(-2;5008(0/2)4- cee
where r and 8 are polar coordinates with the origin attached to the crack tip as shown in

Fig. 1.
Then, referring to equation (32) it follows that the near field solution for the stress
invariant is

2
o 46, = _\‘;_;2*/7;’1»11(:) cos(6/2)+ ... (33)

where

M,(t) = f m,(t) dt.

0o

In a manner analogous to the static theory of brittle fracture, a dynamic stress intensity
factor, k,(t) may be defined [20]:

ki) = M, (0o, /a. (34)

With this definition, the individual stress components may be evaluated, the result being

_ k(1) o .

g, N cos(6/2)[1 —sin(6/2) sin(36/2)] + . ..
k(1) . .

o, = mcos(eﬂ)[l +sin(6/2) sin(36/2)] + . .. (35)
_ k(0

Ty = \/ @ cos(0/2) sin(6/2) cos(36/2)+ .. ..
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Problem B—(j =

The procedure here is the same as that for problem A. Following the operations per-
formed in obtaining equations (27) the stress invariant for the skew-symmetric case is
given by

oY +o) = -%ao‘lpf*(p)/\‘;(l, K) fl cos w dw {Jm exp[—p(\/(w2 +e7 )y —iwX) dw} .(36)
] -

With the variable transformation of equation (29) the inversion procedure leads to the
result,

t
o, +0, = —%J‘ m,(t —1)I,(7) dr 37
0
where
= dwt dw™
I(8 -fo (t—--—-)[ ” —d-t--} cos w dw
and

my(t) = L7 [ *(PIA3(L, ).
As in the symmetric case the singular portion of the solution may be isolated in the neigh-
borhood of the crack tip with the result that
o, +0, = ——J—‘Z-—-M (¢) sin(6/2) + (38)
J 2 e

in which

4

M) = f m,(t) dt.
0

Again a dynamic stress-intensity factor k,(t) may be defined
k(=M 2(:)02\/(,1 (39)
and the individual stress components, in the neighborhood of the crack tip become

)
SN

\/é:) sin(6/2) cos(6/2) cos(36/2) + . (40)

z(t)
\/(2)

This completes the analysis for the dynamic crack-tip stress field which is an essential
piece of information in the application of the current theory of fracture mechanics. The
amount of energy released by the crack during the impact loading as described in the
boundary conditions of this problem can be related to k,(t) and k,(t). For details, refer to a
paper by Sih [20].

sin(8/2)[2 + cos(6/2) cos(36/2)] + .

cos(0/2)[1 ~sin(f/2) sin(36/2)]+ .. ..
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CONCLUDING REMARKS

Through the analysis of the preceding sections, it has been shown that the stress field
very near the crack tip has the same spatial distribution for the dynamic case as for the
static case, the only difference being that the intensity of the field is a function of time. The
time dependent stress-intensity factors k,(t) and k,(¢), being related to the functions m ()
and m,(t), depend ultimately on the functions A¥(1, ) for various values of the Laplace
transform variable p. Inversion of the Laplace transform numerically then enables the
evaluation of m{t) and thus k{t) for both problems A(j = 1) and B(j = 2). The procedure
used for this is described in Ref. [3].

For both modes of loading considered here, numerical results have been obtained for
the case of a uniform load ¢; suddenly applied to the crack surface. That is, g {x) is a constant
and f{t) is the Heaviside step function H(t). By superposition this type of loading corresponds
to the sudden appearance of a crack in a stressed plate. The solutions of the Fredholm
integral equations, AY(1,x)(j = 1, 2), are plotted as a function of c,/pa for both normal
impact and shear impact in Fig: 4.

~
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FiG. 3. Wave fronts emanating from crack tip.

In Fig. 5 the dynamic stress-intensity factors, k(j = 1, 2) normalized with respect to
the corresponding static values are plotted as a function of c,t/a. The ratio of shear wave
speed ¢, to dilatational speed ¢, that was used is 0-542, the value for steel. The results for
mode III, or anti-plane strain loading, previously reported by Ravera and Sih {13], is also
included for comparison. Although the stress-intensity factors for the three modes peak at
different times and possess different maximum values, the character of the three solutions is
the same. That is the stress-intensity factor reaches a peak greater than the static value and
subsequently oscillates about the value with decreasing amplitude.

These results are in agreement with the experimental results of Soltesz and Sommer [11]
mentioned earlier. Measurements of the crack opening displacement, which is directly
related to the stress-intensity factor, showed that k, reached a maximum at approximately
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10~ sec, the same order of magnitude as obtained here. The oscillations that were observed
in crack opening displacement were explained as due to a combination of wave reflection
at the edges of the finite plate and oscillation in the k, value due to the initially applied load,
i.e. the result demonstrated in this paper.

In order to gain further insight into the response of the cracked plate it is useful to
review the wave pattern. When a transient load is applied to the crack surface, the results,
aside from wave propagation from the loaded surface is that the crack tips form the center
of two outgoing cylindrical waves. For the period of time, t,, before these waves begin to
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interact the short time behavior of the solution is described by the equations

k(_S) ) .
Oy = _:/_(JZr_)j“‘(g)’ 0<t<t, and j=12 (41)

where r is the distance from the crack tip, and
kO ~ .t j=12

The function £,(6) is the same as in the static case. Since the disturbance at one crack tip
is not yet affected by the presence of the other crack tip this is the range for which the
solution to the problem of sudden loading on a semi-infinite crack is valid. For anti-plane
strain and normal loading the stress-intensity factors may be obtained from the solutions
of Kostrov [5] and Baker [10]. These are

K = 0.785./(c,t/a)o,\/a (42)

for the case of steel in mode I loading and

22
kY = -—;{-\/(czt/a)a:,\/a (43)

for mode I loading.

These results are plotted in Fig. 5 and show good agreement with the numerical solu-
tions obtained here.

The stress wave pattern loses its geometrical simplicity after the two cylindrical waves
begin to interact although, very close to the crack tip, the angular distribution and square
root singularity remain the same. It is during this period of maximum disorder that the
stress-intensity factor takes on a maximum value.

By allowing a sufficient time to elapse, say c,t » 2a, the wave pattern merges into a
single outgoing wave surrounding the entire crack. It was for the range that Ravera and Sih
[13] explicitly extracted a near-field solution although it may be argued as in this paper that
the near field solution thus obtained is actually valid over the much larger range of time.
The method used here to determine the asymptotic behavior of the near field stress solution
requires only that the stress—wave boundary be well beyond the region of interest. Thus, if
the stress field is to be valid within a distance r of the crack tip, the condition on the time
elapsed is c,t » r. As long as r is kept small enough it may be said that the solution is valid
for all time. The condition on r is of course in addition to the static restriction that r « a.
This restriction was also discussed by Sih and Embley [3] for the case of torsional loading
of a penny-shaped crack.

Recently, Thau and Lu [21] have found the dynamic stress-intensity factor for the
case of a crack engulfed by an obliquely incident dilatational wave. They used the general-
ized Weiner-Hopf technique and found that the stress-intensity factor reached a peak in the
time for the Rayleigh wave to travel from one crack tip to the other. At the peak thereis a
discontinuity in the slope of the stress-intensity factor curve which is smoothed out in the
numerical calculations presented here. In general, the present resuits agree well with those
in [21] and this gives an additional verification to the reliability of the numerical method
employed in this paper.
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AbBcTpaKkT—MCons3ys HHTErpanbHbie Mpeobpa3oBanus, conpaxennbie ¢ MeTonom Kannapua, onpenessio-
TCA HECTAUMOHADHBIC HANDAKCHUS M NOAR NEPeMELCHMH, BOKPYT XOHCYHOH TpCHIMHBI, PackpuiTolt
HOPMAJTLHBIMH M CABMTOBBIMH CHIAMH DACUCIUICHHS, NPANOKEHHLIMH K HX NMOBEPXHOCTAM. ITH YCHAMS
NPHAOKEHBI BHE3AMHO K LIETK, 4TO NpeacTaknger cavalil ynapHolt Rarpysku. Ilyrem BueTa ONHOPOAHOTO
HATPAHKEHHOTO COCTORHHA, HACTONLUCE PCULICHMC NPHMCHACTCA TAKXKC K 3a7a¥e BHE3AMHOI) NOABNCHHA
TPEUIHHE! B NMPCABAPUTEIABHO HANPAKCHHOM Tene. Pe3ynbTATH YKa3biBRIOT Ha IHAYMTEIIBHYIO DaIHHLY
MCXKOY NONyYeHHLIMH (DAXTODAMH HHTEHCHBHOCTH AMHAMHWYCCKMX HanpmkeHni, nna 3ToH 3amaud, ¥
TaKHMH XC DE3YNLTATAMH J[UIS CTaTHYecKolf Harpysxu. B ocoBenHocrs, 3Heprus ocsoSomuenHas
OHHAMHYECKH HArPYXKCHHOR TPeWMHOR, CBA3aHa ¢ PAKTOPOM MHTEHCHBHOCTH HANDAXCHHHE, HIMCHACTCR B
3ABHCHMOCTH OT BPEMCHH M HOCTHI aeT MAKCHMMYMa OueHb SHICTPO, 2 Ranee xonebaeTca BOKPYT CTRATHHYECKOTO
3HAYYHHR, Honyqeuuas KH&OPM&IIH!I MPHIONHA LA ONPENCTHCHUA PACITDOCTPARCHHN IHCTH NOA BIIHSHACM
yamapa.



