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Abstract-The transient stress and displacement fields around a finite crack opened out by normal and shear
tractions applied to its surface are obtained using integral transforms coupled with the technique of Cagniard.
The tractions are applied suddenly to the crack which simulates the case of impact loading. By subtracting a
uniform state of stress. the present solution also applies to the problem of the sudden appearance of a crack in
a pre-stressed body. The results show that siJllificant differences exist between the dynamic stress-intensity factors
obtained in this problem and those resUlting from static loading. In particular. the energy released by the dynami­
cally loaded crack which is associated with the stress-intensity factor varies with time reaching a maximum very
quickly and then OICiUates about the static value. The information gained is useful in determining the condition
or crack propaption under impact.

INTRODUcnON

OF CONSIDERABLE importance in structural analysis is the transient response of a flaw
to a time dependent stress field. The solutions to problems of this type could be applied
equally well to cracks in an aircraft wing or to faults in the lithosphere of the earth for
example.

A number of papers on the area of dynamic crack analysis have been reviewed in [1].
Recently, the response of a penny shaped crack to various types of transient loads has
been considered in papers by Embley and Sih [2] and Sih and Embley [3]. Some other
works that specifically deal with transient responses of flaws with finite dimensions have
been discussed in Refs. [2, 3] and are due to Flitman [4], Kostrov [5], Eshelby [6] and
Achenbach [7, 8]. With the exception of Flitman who considered the far-field solutions
to the problem of the sudden appearance of a crack in an elastic media, the authors men­
tioned have used mathematical techniques successful so far for the case of anti-plane
shear only.

The sudden appearance ofa semi-infinite crack in an elastic media has been considered
by Kostrov [5] for the case of anti-plane loading and by Maue [9] and Baker [10] for the
problem of normal tractions. Although these solutions become unhO\.lnded as t -+ 00

t This paper is the result of research sponsored by the U.S. Air Force. Eglin Air Force Base under Contract
F08635·7o-C-0120.
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the near field solutions are valid near one tip of a finite crack for the initial period of time
before interaction with the stress waves emanating from the other crack tip occurs.

In this paper, the complete near field solution to the problem of a finite line crack
subjected to transient in-plane loading will be considered. In conjunction with this, it
should be noted that experimental results have been reported by Soltesz and Sommer
[llJ which have a direct bearing on the theoretical results presented here. The aforemen­
tioned authors experimentally determined the time-dependent dynamic stress-intensity
factor due to normal loading of a crack by measuring crack opening displacement. The
measurements were made on a glass plate by using an optical interference technique and
high speed photography. A shock wave formed in a conventional shock tube was used to
cause a step function pressure increase on the end face of the cracked plate. Although
wave reflection at the boundaries of the finite plate makes interpretation difficult, the order
of magnitude of the response compares favorably with the results obtained in this paper.

The specific geometry to be considered here is an infinite elastic plate containing a
through-the-thickness line crack oriented as shown in Fig. 1. The transient response
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FIG. 1. eraclt gcomctryand stress componenls.

of the material in the neiahborhood of the crack tip will be obtained for two cases. The
first deals with the sudden application of self-equilibrating normal tractions to the crack
surface. For mathematical simplicity the load is separable into a spatial and temporal
function where the spatial function is even in x. Symmetry conditions then enable the
problem to be solved in the upper half-space only [12]. The results are directly applicable to
the sudden fracture of a plate due to impact caused by projectile penetration, This is
modeled as the case of a crack appearing suddenly in a pre-stretched plate which is mathe­
matically equivalent to the problem of applying sudden tractions to the crack surface.

The second case pertains to sudden in-plane shear tractions applied to the crack
surface. If the tractions on the upper and lower crack surfaces are equal in magnitude and
opposite in sign then symmetry conditions again allow solution in the upper half-plane
only. Additional simplicity is obtained by requiring that the spatial component of the load
be even in x.

In both cases the method ofsolution will be to reduce the mixed boundary value problem
to a standard Fredholm integral equation in the Laplace transform variable and sub­
sequently invert the Laplace transforms of the stress components by a combination of
numerical means and an application of the Cagniard inversion technique. This method was
used for the transient problem of anti-plane strain by Ravera and Sih [13].
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FORMULATION OF PROBLEM
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(1)

For plane elastodynamic problems, the displacement component may be expressed
in terms of two scalar potentials c/J(x, y, t) and "'(x, y, t), so that

oc/J oljJ
u=--+-ox oy

oc/J oljJ
V= ----oy ox

where c/J and ljJ satisfy the second order partial differential equations

V2c/J = -!- a
2

c/J V2 ljJ = -!- o2ljJ
ci ot2

' c~ at2 (2)

with V2 being the Laplacian operator. The dilatational and shear wave velocities are,
respectively

with Aand Jl being the Lame constants.
Applying the strain-displacement and constitutive equations for a homogeneous iso­

tropic elastic media the stresses may be written in terms of c/J and ljJ as,

2 2 2 a(OljJ Oc/J)
(J = -pc V c/J+2PC2-. -+-

x 1 oy ax oy

(3)

Problem A-symmetric in-plane extension
For zero initial conditions, the stress and displacement field due to sudden application

of normal tractions to the crack surface may be found by solving the preceding field
equations subject to zero initial conditions, and the following boundary conditions at
y=o

(J).(x, 0, t) = -(Jlql(X)!(t),

TXY(X, 0, t) = 0,

v(x, 0, t) = 0,

for Ixl < a

for °< Ixl < ce
for Ix! > a.

(4)

In addition the condition on displacement at infinity is

lim [u(x, y, t), v(x, y, t)J = O.
x2+ ),2_oc,

The parameter (J 1 is a constant with the dimension of stress and ql(X) is restricted to func­
tions that are even in x; that is,
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Problem B-skew-symmetric in-plane shear

In this case in-plane tangential tractions only are suddenly applied to the crack surface.
The initial conditions are again zero and the boundary conditions are:

(Jy(x, 0, t) = 0, for °< Ixl < ::t::J

'CXy(x,O, t) = -(J2Q2(X)f(t), for Ixl < a (5)

u(x, 0, t) = 0, for Ixl > a

and,

lim [u(x, y, t), v(x, y, t)J = 0
x2+ y2_ oo

where (J 2 is a constant with the dimension ofstress and where Q2(X) is restricted to functions
that are even in x. That is,

DUAL INTEGRAL EQUATIONS

Recalling that the initial conditions are zero, the Laplace transform may be applied
to equations (2) with the result

V2ljJ* = (p/cyljJ*, V2",* = (P/C2)2t/J* (6)

with the Laplace transform pair being defined by the equations:

f*(p) = fooo f(t) exp( - pt) dt, f(t) =-2
1

.f. f*(p) exp(pt) dp
1tl B,

where the second integral is over the Bromwich path [14J.
In order to reduce equations (6) to ordinary differential equations the Fourier cosine

and sine transforms will be applied. The Fourier cosine transform pair is

J(a.) = foX) f(x) cos(a.x) dx,

and the Fourier sine transform pair is

!(a.) = foX) f(x) sin(a.x) dx,

2 foof(x) = - J(a.) cos(a.x) dr:t.
1t 0

.., foof(x) = .: !(a.) sin(a.x) da..
1t 0

The application of these transforms will depend on whether the function under considera­
tion is even or odd in x and will be considered separately for problems A and B.

Problem A

By consideration of the symmetry properties of the boundary conditions it can be
shown that for this case,

ljJ(x, y, t) = ljJ( - x, y, t), t/J(x, y, t) = - t/J( - x, y, t)

and the solution may be considered in the first quadrant of the plane.
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(7)

Then, the Fourier cosine transform is applied to the function cP* and the Fourier sine
transform is applied to l/J* in equations (6), the result being,

d2cp*
d

y
2 -[a2+(p/c t)2Jcp* = 0

d2tiJ*
d

y
2 - [a2+(p/C2)2JtiJ* = o.

Solutions to equations (7) that satisfy the regularity conditions at infinity are

(8)

provided that the a-plane is cut so that,

J[a2+ (p/c/J 20, - 00 < a < 00 U= 1, 2).

(9)

The inverse Fourier transforms of equations (8) are

cP* = foro At(a, p) exp(-Yty)cos(ax) da

l/J* = foro Bt(a,p)exp(-Y2y)sin(lXx)dlX.

The quantities Yt and Y2 in equations (8) and (9) are defined as

Yt = J[1X2+(p/Ct )2J, Y2 = J[a2+(p/c2)2].

By combining the Laplace transform of t XY with cP* and l/J*, the second boundary
condition in equations (4) may be expressed in the form,

foOO {IXYtAt(lX,p)_[1X2+~p/C2)2JBt(cx,p)} sin(cxx)dlX = 0, 0 < x < 00.

The preceding equation is satisfied for all x by defining a new function Dt(lX, p) such that

At(lX, p) = [lX
2

+!<p/C2)2JDt (lX, p), B ( ) D ( )ta,p =lX tlX,p.
}' t

Then, referring to equations (9), cP* and l/J* may be written as

c/>* = {OO :t(1 + 21X;k2) Dt(cx, p)exp(-rtY) cos(cxx)a2 dlX

l/J* = 1
0

00

Dt(a,p)exp(-Y2y)sin(lXx)cxdcx

with the parameter k defined as,

(10)
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Finally the first and third boundary conditions in equations (4) may be applied by sub­
stituting equations (10) into the Laplace transforms of (1y and v. The resulting set of dual
integral equations is

Ixl < a

(11)

Ix! > a

wheref*(p) is the Laplace transform of the functionf(t) in the first of equations (4) and
where

with

Problem B
In this case consideration ofsymmetry in the boundary conditions leads to the following

properties of 4> and !/J.

4>(x, y, t) = - 4>( - x, Y, t), !/J(x, y, t) =: !/J( - x, y, t).

Then, by similar reasoning to that used for problem A, integral representations of the
Laplace transforms of </:I and'" may be written in the form

</:1* = 5
0

00

D2(a, p) exp( -Yly)sin(ax)« da

t/J* = - {Xl :Jl+2)k2)D2(a,p)exP(-Y2y)coS(ax)a2da.

(12)

These expressions automatically satisfy the first of equations (5) while the remaining
boundary conditions require that Dia, p) be the solution to the following set ofdual integral
equations

Ixl < a
(13)

Ixl > a

with
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SOLUTION OF DUAL INTEGRAL EQUATIONS

The form of the dual integral equations is the same for both problems A and B. In order
to put these equations in a form amenable to solution, the first equation in each set of the
dual integral equations is integrated with respect to x over the interval (0, x). The result for
both problems may be summarized as follows:

f
e>? (1 ;Qjx)f*(P)

gja.k)D){a., p) sin(a.x) da. = ) 2· ,
o pp

IJ

" D){a., p) cos(a.x) da. = 0, Ixl > a

Ixl < a

(14)

where j = 1, 2 and

(15)

Qjx) = f: qjs) ds.

The subscript j is equal to 1 for problem A and 2 for problem B.
Following the usual argument [15] for solution of dual integral equations, a displace­

ment related function hj(x, p) is defined by the equation,

2fe>?hj(x, p) = - Dja., p) cos(a.x) da.
1t 0

where hj(x, p) must be zero for Ixl > a as required by equation (14). Hence the Fourier
inversion theorem leads to the expression,

D){a., p) = I hj(x, p) cos(a.x) dx. (16)

(17)Ixl < a.

The function hj(x, p) is to be constructed to possess the proper asymptotic behavior at the
crack border so that the near-field displacement is proportional to the square root of the
distance from the crack edge. To this end, let

* _ fa Uj(T, p)t dT
hj(x,p) - x J(T 2-X2) '

Substitution of equation (17) into (16) and application of the identity

fT cos(a.x) dx = !!-J (a.T)
o J(T2-X2) 2 0

(18)

where J 0 denotes the zero-order Bessel function of the first kind, leads to the expression

1t fa
Dja., p) = 2 0 Uj(T, p)Jo(a.t)t dt. (19)

In order to rewrite the first of equations (14) as an Abel's integral equation for Uj(T, p)
a function wja.k) is introduced such that

(20)
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By virtue of equations (19) and (20), the governing integral equation takes the form

fa [f<Xl ] 2 u·QAx)f*(p)
(l-c~) Uj('t,p)t Jo(~t)sin(~x)drt dt=-)) 2

o 0 7l: PP

+ J: [Uj(r, p)r fo<Xl wictk)Jo(~r) sin(~) dctJ dr. (21)

Using the identity

x>r

O<x<r
I<Xl Jo(~t) sin(~x) dlX = LX2 ~:2)-t,

the desired form of Abel's integral equation is obtained

(l-c2) I" Uj(t, p)r dr = ~ ujQix)f*(p)
o 0 J(x2_ r2) 7l: pp2

+ f [U1(t, p)t {<Xl w){tXk)Jo(tXt) sin(tXx) dlXJ dt,

Inversion of the preceding equation yields

Ixl < ct.

(1- c2 )U'!'(t, p) =~If 1 {~ uflix)f*(p)
0) 7l: 0 J(r2-x2) 7l: pp2

+ I: [Uj«(, p)l; fo<Xl wJ{lXk)J0(1X() COs(IXX)tX dlXJ d{ } dx,

Now, introduce the non-dimensional variables

r < a. (22)

and define

~ = tla, Yf = (la, s = tXa, z = xla

K = kia, f3iz) = wj(za)

A '!'(" ) = ~(1- 2)pp2.J(~)Uj(ea, p)
J .. , K 2 Co ujf*(p) .

Then, making use of equation (18), equation (22) may be written in the form of a standard
Fredholm integral equation of the second kind

Aj(~, K)- fl A1(Yf, K)Ki~, Yf) dYf = ~J~ f~ JJ~:)d\ (23)
o 7l: 0 <;-z

whose kernel, being symmetric in ~ and '1, is

O<~s;I;

For rapid convergence of the infinite integral, define a function diK) as

H.
d){K) = WJ{K)+ 2 )£2' j = 1,2

K + j
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where, in order that dj..K) be of order (K)-6 for large Ie, HJand Ef are chosen as

HI == H3c6-4c~+3)

H2 == *(1 +C6)

E~ == 8~ (5c~ - 6C6+2c~+1)
I

Since

985

(24)

fcc ( )~j EiJO(sr,)Jo(se)sds == H1Io(~)Ko(~), 0 <' ~ '7
o SK + J KKK

the expression for the kernel in the Fredholm integral equation becomes

Kj..e,'7) == f~e:~[ - ~lIo(e:J)Ko(~)+f~ sdj..SK)Jo(S'7)Jo(S,)dSl 0 < e ~ '7

where 10 and K o are the zero-order modified Bessel's functions of the first and second kind,
respectively.

Making use of equation (19) and the definition of Aj the unknown function Dirx, p)
may be written in terms of the solution of the Fredholm integral equation as,

- (]fl2f*(P) fl [Aj(e, K)]
DJ(rx, p) - (l-c~)ppi 0 J' Jo(cxae)e de.

This expression may be integrated by parts with the result

DJ{rx, p) == (1~~~C:2rx {Aj(l, K)J I(rxa)- f :,[Aj~~ K)]J I(cxa,)e de}

from which the stresses and displacements may be determined.

TIME DEPENDENT STRFSS FIELD

The integral expressions for the Laplace transforms of the potentials tjJ and '" are now
completely determined and, making use of equations (3), corresponding expressions for
the Laplace transforms of the dynamic stresses may be obtained. It remains then to take
the inverse Laplace transforms. This may be accomplished by applying the Cagniard
DeHoop inversion technique [16, 17J. Due to the complexity of calculation, the detailed
procedure will be given only for the first stress invariant (]:c +(]y' From equations (3) and (6)
the Laplace transform of (]:c+(],' is

(]; + (]~ == - 2p,,2(1- c~)cPj, j == 1,2 (25)

where the j subscript has been added to distinguish between the problem with normal
tractions and the problem with shear tractions.

The part of the solution of interest here is the singular solution near the crack tip. For
this portion of the solution it is easily shown [15J that only the first term on the right hand
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side of equation (24) need be retained. The integral expression in Virx, p) is associated with
terms that remain finite at the crack tip.

Problem A-(j = 1)

Putting 4>* in equations (10) into (25), the near-field solution for «1.. +«1y in the trans­
formed plane is

«1: + «1; = - 2«1 1af*(p)AT(l, K) rr _1_[0(2 +t(plc ,)2JJ1(rxa) exp(y IY) cos(rxx) drx.
Jo rxYI -

Changing the variable of integration to 0( = wp and noting that J 1(apw) is an odd function
with respect to w, the above becomes

«1: + «1; = -«11af*(p)AT(I, K)p f~" T(w)J 1(apw) exp[ - P(J(w2+c 1- 2)y_ iwx)J dw (26)

in which T( w) stands for

Making use of the identity [18J,

J1(x) = ~f." exp(-ixcosw)coswdw
71: 0

equation (26) further simplifies to

ia«1 p f"«1: +«1; = --l-f*(p)AT(l, K) cos w
71: 0

x dw{f~oo T(w) exp[ - P(J(w2 +c~2y)-iwX)J dW}.
The variable X is given by

x = x-a cos w.

(27)

(28)

To evaluate equation (27), consider first the function l~ defined by the relation

Ii = f
o
" cos w dw f

o

oo

T(w) exp[ -P(J(w2+c~2)y-iwX)J dw.

This function is in a form suitable for evaluation through the Cagniard-DeHoop method.
The objective hete is to transform the integral on the right side of equation (28) into a
recognizable Laplace transform. This may be done by making the change in variables.

r = J(W2+C;2)y-iwX.

Solving for w as a function of r gives

Ir 2 2 Y iXr
w = ±-y'Lr -(Rlcl ) JR2 + R 2

in which R 2 = X 2 + y2 and y = X tan f3 where f3 is defined in Fig. 2.

(29)
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FIG. 2. Path of integration in w-plane.

The remainder of the procedure consists of treating was a complex variable and locating
a path in the w-plane along which T is a positive number. Referring to Fig. 2 and noting
that the integrand in equation (28) possesses branch points at ± ic1, cuts are made in the
w-plane as shown in order that the. function (wl + Ijci)t be single valued and have a real
part that is positive everywhere in the w-plane. IfT is restricted to real non-negative values,
equation (29) is the equation ofa hyperbola in the w-plane. IfX > 0 (X < 0) the hyperbola
will be in the upper (lower) half of the w-plane. The path of integration in equation (28) can
be converted from the real axis to the aforementioned hyperbola by making use of the
Cauchy integral theorem and Jordan's lemma. Thus, after changing the variable of in­
tegration to T by means of equation (29), it is found that

IT = f~os w dw fCXl f;.(w+) dd
w

+_ T(w-) ddw-J exp( - rn) d. (30)
o Ric] r • •

where the (+) and (-) superscripts refer to the right (left) hand legs of the hyperbola.
Noting that the inner integral is in the form of a Laplace transform it is a matter of inspec­
tion to write the inverse Laplace transform of Ii as

I1(t) = f:H(t-~)[T(w+)d;t+ -T(w-)d;~-JCOSWdW (31)

where H(t) is the Heaviside step function. Referring to equations (27) and (28) and making
use of the .convolution theorem for the Laplace transform, the stress invariant is obtained:

(32)

where
m1(t) = !f'-I[pf*(P)Ai(l, Ie)]

with !f'-1 being the inverse Laplace transform operator.
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In order to determine 0'x + 0', in the region near the crack tip it is necessary to extract
the singular portion of I 1(t) from equation (31). Without going into the mathematical
details, it is easy to show that, as long as elt is sufficiently greater than r, the radial distance
measured from the crack tip, I I is independent of time, i.e.

with

z = x+iy,

and where the transformation of variables

z = x-iy

q = a cos OJ

has been made.
Making use of chapter 4 of Muskhelishvili [19] the evaluation of the above integrals

near the crack tip leads to the following expression for the singular portion of II'

21ti
II = ..)(2ar) cos(O/2) + ...

where rand 0 are polar coordinates with the origin attached to the crack tip as shown in
Fig. 1.

Then, referring to equation (32) it follows that the near field solution for the stress
invariant is

(33)

where

In a manner analogous to the static theory of brittle fracture, a dynamic stress intensity
factor, k1(t) may be defined [20]:

(34)

With this definition, the individual stress components may be evaluated, the result being

O'x = )(;;) cos(8j2)[1-sin(8/2) sin(38j2)] + .

0', = )(;;) cos(O/2)[1 +sin(O/2) sin(30/2)] + .

kl(t) .
rxy = ..)(2r) cos(O/2) sm(0/2) cos(30/2) + ....

(35)
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Problem B-(j = 2)

The procedure here is the same as that for problem A. Following the operations per­
formed in obtaining equations (27) the stress invariant for the skew-symmetric case is
given by

0':+0'; = -~aO'lPf·(p)Af(l.") Ilcosrodro{f:", eXP[-p(~(W2+C12)Y-iWXJdw}.(36)

With the variable transformation of equation (29) the inversion procedure leads to the
result,

(37)

where

I'" ( R) [dW+ dw-J12(t) = H t-- ---- cosrodw
o C1 dt dt

and

m2(t) = !f'-l[pf*(P)A!(l, ,,)J.
As in the symmetric case the singular portion of the solution may be isolated in the neigh­
borhood of the crack tip with the result that

2(J2~a .
(Jx+ u, == - ~2r M 2(t) s1D(0/2) + ... (38)

in which

M 2(t) = { m2(t) de.

Again a dynamic stress-intensity factor k2(t) may be defined

k 2(t) = M 2(t)U2~a (39)

and the individual stress components, in the neighborhood of the crack tip become

O'x = - 5~~) sin(0/2)[2 +cos(0/2) cos(30/2)] + ...

k2(t) .
uy = ~(2r) sm(O/2) cos(O/2) cos(39/2) + .. . (40)

t XY = 5(~~) cos(Oj2)[1- sin(0/2) sin(30/2)] + ....

This completes the analysis for the dynamic crack-tip stress field which is an essential
piece of information in the application of the current theory of fracture mechanics. The
amount of energy relealed by the crack during the impact loading as described in the
boundary conditions of this problem can be related to k 1(t) and k 2(t). For details, refer to a
paper by Sih [20].
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CONCLUDING REMARKS

y

•

Through the analysis of the preceding sections, it has b~en shown that the stress field
very near the crack tip has the same spatial distribution for the dynamic case as for the
static case, the only difference being that the intensity of the field is a function of time. The
time dependent stress-intensity factors k 1(t) and kz(t), being related to the functions m1(t)
and mz(t), depend ultimately on the functions AjO, K) for various values of the Laplace
transform variable p. Inversion of the Laplace transform numerically then enables the
evaluation of mit) and thus kit) for both problems A(j =: 1) and B(j = 2). The procedure
used for this is described in Ref. [3].

For both modes of loading considered here, numerical results have been obtained for
the case ofa uniform load (lj suddenly applied to the crack surface. That is, qj{x) is a constant
andf(t) is the Heaviside step function H(t). By superposition this type ofloadingcorresponds
to the sudden appearance of a crack in a stressed plate. The solutions of the Fredholm
integral equations, Aj(l, K)(j =: 1,2), are plotted as a function of cz/pa for both normal
impact and shear impact in Fig; 4.
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" -------
FIG. 3. Wave fronts emanating from crack tip.

In Fig. 5 the dynamic stress-intensity factors, k;V =: 1,2) normalized with respect to
the corresponding static values are plotted as a function of czt/a. The ratio of shear wave
speed Cz to dilatational speed c1 that was used is 0·542, the value for steel. The results for
mode III, or anti-plane strain loading, previously reported by Ravera and Sih [13], is also
included for comparison. Although the stress-intensity factors for the three modes peak at
different times and possess different maximum values, the character of the three solutions is
the same. That is the stress·intensity factor reaches a peak greater than the static value and
subsequently oscillates about the value with decreasing amplitude.

These results are in agreement with the experimental results ofSoltesz and Sommer [11]
mentioned earlier. Measurements of the crack opening displacement, which is directly
related to the stress-intensity factor, showed that k 1 reached a maximum at approximately
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10- 5 sec, the same order of magnitude as obtained here. The oscillations that were observed
in crack opening displacement were explained as due to a combination of wave reflection
at the edges ofthe finite plate and oscillation in the k1 value due to the initially applied load,
i.e. the result demonstrated in this paper.

In order to gain further insight into the response of the cracked plate it is useful to
review the wave pattern. When a transient load is applied to the crack surface, the results,
aside from wave propagation from the loaded surface is that the crack tips form the center
of two outgoing cylindrical waves. For the period of time, t~, before these waves begin to
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interact the short time behavior of the solution is described by the equations

o < t < t. and j = 1,2 (41)

where r is the distance from the crack tip, and

j = 1,2.

The function fu.(()) is the same as in the static case. Since the disturbance at one crack tip
is not yet affected by the presence of the other crack tip this is the range for which the
solution to the problem of sudden loading on a semi-infinite crack is valid. For anti-plane
strain and normal loading the stress-intensity factors may be obtained from the solutions
of Kostrov [5] and Baker [10]. These are

(42)

for the case of steel in mode I loading and

(43)

for mode III loading.
These results are plotted in Fig. 5 and show good agreement with the numerical solu-

tions obtained here. .
The stress wave pattern loses its geometrical simplicity after the two cylindrical waves

begin to interact although, very close to the crack tip, the angular distribution and square
root singularity remain the same. It is during this period of maximum disorder that the
stress-intensity factor takes on a maximum value.

By allowing a sufficient time to elapse, say czt » 2a, the wave pattern merges into a
single outgoing wave surrounding the entire crack. It was for the range that Ravera and Sih
[13] explicitly extracted a near-field solution although it may be argued as in this paper that
the near field solution thus obtained is actually valid over the much larger range of time.
The method used here to determine the asymptotic behavior of the near field stress solution
requires only that the stress-wave boundary be well beyond the region of interest. Thus, if
the stress field is to be valid within a distance r of the crack tip, the condition on the time
elapsed is czt » r. As long as r is kept small enouah it may be said that the solution is valid
for all time. The condition on r is of course in addition to the static restriction that r « a.
This restriction was also discussed by Sih and Embley [3] for the case of torsional loading
of a penny-shaped crack.

Recently, Thau and Lu [21] have found the dynamic stress-intensity factor for the
case of a crack engulfed by an obliquely incident dilatational wave. They used the general­
ized Weiner-Hopftechniqueand found that the stress-intensity factor reached a peak in the
time for the Rayleigh wave to travel from one crack tip to the other. At the peak there is a
discontinuity in the slope of the stress-intensity factor curve which is smoothed out in the
numerical calculations presented here. In general, the present results agree well with those
in [21] and this gives an additional verification to the reliability of the numerical method
employed in this paper.
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A6cTpaICT-l1cnOJII>3Yll HHTCrp8J1bKWC npe06pa30BaHHlI, conpllllCcHHWC C MeTO.llOM KaHHap.lla, ODpe.lle1lllJO<o
TClI HecTallHoHapHwc HanpllXCCHHlI H nonll ncpeMcwcHHA, BOlCpyr ICOHc1fHoA TPeUl1fH&l, paclCPloIToA

HOpM8J1bHWMH H C.QBHrOBIoIMH CHJlIlMH paCllenneHHlI, npHJIOllCeHHIoIMH IC HX noaepxKOCTlIM. 3TH YCHJlHlI

npHJIOllCCHIoI BHC3anHO K wcnH, 'ITO npe.llCTatmlleT cJI1Ial Y.ll8PHoA HlU'Py31CH. nyreM BW'leTa O.QHOPO.llHOTO
HanpaXCCHHoro COCTOJlHHlI, HaCTOllwee peWCHHC npHMCRlIeTClI TaICllCC IC 3a.ll8'lC BHC311DHor.') nOll8JleHJIll

TpeUlHHW B npe.ll88pHTe1IbHO HanpllllCCHHOM Te1IC. Pe3ynbTaTIoI YU3101BalOT Ha 3Ha'lKTeJlloHylO pa3HHUY

Me»C.llY nOJIy'lCHHIoIMH cPalCTopaMH HNTeKCHBHOCTH .llHHaMH'fCCICHX HanpllllCCKHA• .llJllI 3roll 3aJla'lH, H

TaICHMH lICC pe3YJlbTaTaMH .llJlll CTaTH'iecICOA Harp)'31CK. B oco6eHHOCTb, ::IHCprHlI OC1I06ollCJleHH811

.llUHaMH'iecICH HarpyxcCHHoA TpeWHHOA, C1IJI3aHa C cPanOPOM HHTeHCHBHOCTH HlUlPlfllCCHHA, H3MCRlICTCll B
3llBHCHMOCTH OT BpeMCHH H .llOCTHraCT MalCCKMYMa O'leHb 6wCTPQ, a .llanee xone6aeTCll BOlCPyr CTaTH'IecKOrO
3Ha'l)'HHll. nOJJY'ICHHall HH4K>PMallHlI npHrO.llHa.llJlll ODpe.lle1lCHHlI pac:npocrpaHeHHlI We1IH nO.Q8tlHlDIKCM

Y.llapa.


